Product Description
Stainless Steel Flex Coupling with Inner Braid Liner Flexible Exhaust Muffler Pipe for Auto~
Application:
Flexible Exhaust Pipe Connector:
It is installed in the exhaust pipe between the engine exhaust branch pipe and the muffler, which makes the connection of the entire exhaust system flexible and plays a role in reducing noise. Easy to install and extend the life of exhaust noise reduction system.
Mainly used for light trucks, small passenger cars and buses. The structure is a double-layer corrugated pipe covered with a steel wire mesh sleeve, and the 2 ends are a straight edge segment outer snap ring structure. In order to improve the noise reduction effect, an expansion joint or mesh sleeve can be installed in the bellows.
Product Details:
Double Layer Auto Exhaust Flexible Engine Pipe for truck
-1. Suitable for a wide range of the tail pipe link.
-2. We can make parts with a high degree of flexibility.
-3. In particular, we increase the height of the bellows to enhance the effectiveness of vibration absorption.
-4. This product is used in exhaust system and high-and low-temperature.
-5. It can decrease engine noise and vibration.
Type 1.
Interlock Pipe + Bellow + Outer Braid + Cap
Type 2.
Bellow + Outer Braid + Cap
Type 3.
Inner Braid + Bellow + Outer Braid + Cap
Workshop:
Auto Exhaust Bellow Production Line:
1. Automobile exhaust flexible pipe forming machine
A. Automatic vertical bellow forming machine(One stroke 1 piece)
* Size range: 32-100mm
* Thickness range: 0.3mm-1mm
* Working principle: Hydraulic
B. YKCX-65D automatic bellow forming machine
* Inner diameter of the bellow: 16-60mm
* Thickness of the bellow: customized acceptable
* Toolings/different size changing time is about 15 minutes
* Capacity: 10 seconds for 1 convolution
* Length of tube before forming: L≤1000mm.
* Use feeding cylinder
2. Automobile exhaust bellow assembly machine
A. Bellow compressing machine B. Cap crimping machine
C. Bellow end trimming machine(single head or double head)
D. Interlock hose making machine E. Wire braiding machine
Package&Delivery:
Company Profile:
We are a professional manufacturer of all types of metal flexible metal hose making machines and machinery with more than 35 years of history, such as corrugated metal hose making machine, interlock hose making machine etc… These hoses are widely used in energy, petroleum, petrochemical, machinery, refrigeration, construction, hydropower, nuclear power, cement, paper, medicine, transportation, mining, metallurgy, urban central heating, shipbuilding, city gas, natural gas pipeline construction, Central air conditioning, aerospace and other industries. Our machines have exported to many countries such as Russia, Ukraine, USA, Australia, New Zealand, Poland, etc..
FAQ
Q: Why so many suppliers choose us?
A: Because we are 1 of the most professional manufacturers of flexible exhaust pipes with more than 25 years of experience.
Q: What is the delivery time about the order?
A: The delivery time would be depended to your quantity, usually from 7~20 days
Q: How about the payment terms?
A: Normally 30% deposit in advance, the balance should paid before shipment.
Q: Do you provide samples? Is it free or charged?
A: Yes, we can offer free samples but courier costs are covered by the customer.
Q: Can the products be manufactuered by customer’s requirement?
A: Yes, the specifications stated above are the standard ones, we can design and manufacture as required. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
How do you install and align a flexible coupling properly to ensure optimal performance?
Proper installation and alignment of a flexible coupling are essential to ensure its optimal performance and longevity. Incorrect installation can lead to premature wear, increased vibrations, and potential equipment failure. Below are the steps to install and align a flexible coupling properly:
1. Pre-Installation Inspection:
Before installation, inspect the flexible coupling and its components for any visible damage or defects. Check that the coupling’s size and specifications match the application requirements. Ensure that the shafts and equipment connected to the coupling are clean and free from debris.
2. Shaft Preparation:
Prepare the shafts by removing any oil, grease, or contaminants from the surfaces that will come into contact with the coupling. Ensure that the shaft ends are smooth and free from burrs that could affect the fit of the coupling.
3. Coupling Hub Installation:
Slide the coupling hubs onto the shafts, ensuring they are positioned securely and evenly on each shaft. Use a lubricant recommended by the manufacturer to facilitate the installation and ensure a proper fit.
4. Alignment:
Proper alignment is critical for the performance and longevity of the flexible coupling. Align the shafts by checking both angular and parallel misalignment. Utilize precision alignment tools, such as dial indicators or laser alignment systems, to achieve accurate alignment. Follow the manufacturer’s alignment specifications and tolerance limits.
5. Tightening Fasteners:
Once the shafts are properly aligned, tighten the coupling’s fasteners to the manufacturer’s recommended torque values. Gradually tighten the fasteners in a cross pattern to ensure even distribution of the load on the coupling hubs. Avoid over-tightening, as it may cause distortion or damage to the coupling.
6. Run-Out Check:
After installation, perform a run-out check to verify that the coupling’s rotating components are balanced and aligned. Excessive run-out can lead to vibrations and reduce the coupling’s performance. If significant run-out is detected, recheck the alignment and address any issues that may be causing it.
7. Lubrication:
Ensure that the flexible coupling is adequately lubricated, following the manufacturer’s recommendations. Proper lubrication reduces friction and wear, enhancing the coupling’s efficiency and reliability.
8. Periodic Inspection and Maintenance:
Regularly inspect the flexible coupling for signs of wear, misalignment, or damage. Address any issues promptly to prevent further problems. Depending on the coupling type and application, scheduled maintenance may include re-greasing, re-alignment, or replacing worn components.
Summary:
Proper installation and alignment are crucial for ensuring the optimal performance and longevity of a flexible coupling. Following the manufacturer’s guidelines, inspecting the components, achieving accurate alignment, and using the appropriate lubrication are key steps in the installation process. Regular inspection and maintenance help to identify and address potential issues, ensuring the coupling continues to operate smoothly and efficiently in the mechanical system.
Can flexible couplings be used in pumps, compressors, and fans?
Yes, flexible couplings can be used in pumps, compressors, and fans, and they are commonly employed in these types of rotating machinery. Flexible couplings offer several advantages that make them suitable for such applications:
- Misalignment Compensation: Pumps, compressors, and fans often experience misalignments due to various factors, such as thermal expansion, foundation settling, or component wear. Flexible couplings can accommodate angular, parallel, and axial misalignments, helping to maintain proper alignment between the driving and driven components.
- Vibration Damping: Flexible couplings help dampen vibrations in rotating machinery, which is essential for smooth operation and reduced wear on components. In pumps, compressors, and fans, vibration control is crucial to prevent premature failure and maintain reliable performance.
- Shock Load Absorption: These rotating machines may encounter shock loads during startup or shutdown, especially in reciprocating equipment like reciprocating pumps or compressors. Flexible couplings can absorb and mitigate the impact of such loads, protecting the connected equipment from damage.
- Reduced Maintenance: Flexible couplings with elastomeric elements or other self-lubricating features require minimal maintenance, leading to cost savings and reduced downtime in pumps, compressors, and fans.
- Energy Efficiency: Certain flexible coupling designs, such as beam couplings or certain elastomeric couplings, have low mass and inertia. This characteristic helps improve the energy efficiency of rotating machinery, which is particularly beneficial in large-scale pumps, compressors, and fans used in industrial applications.
- Adaptability: Pumps, compressors, and fans often have varying operating conditions and load profiles. Flexible couplings are adaptable to different operating environments, making them suitable for diverse applications.
In summary, flexible couplings offer several performance-enhancing features that make them well-suited for use in pumps, compressors, and fans. Their ability to accommodate misalignment, dampen vibrations, absorb shocks, and reduce maintenance requirements contributes to improved reliability, efficiency, and longevity of the connected rotating machinery.
Can you explain the different types of flexible coupling designs available?
There are several types of flexible coupling designs available, each with its unique construction and characteristics. These designs are tailored to meet specific application requirements and address different types of misalignment and torque transmission needs. Here are some of the most common types of flexible couplings:
- Jaw Couplings: Jaw couplings consist of two hubs with curved jaws and an elastomer spider placed between them. The spider acts as a flexible element and can compensate for angular and parallel misalignment. Jaw couplings are widely used in various industrial applications due to their simple design and effectiveness in handling misalignment and vibration damping.
- Disc Couplings: Disc couplings use thin metallic discs with a series of alternating slits and flanges to connect the shafts. The disc coupling design allows for excellent misalignment compensation, including angular, parallel, and axial misalignment. Disc couplings are known for their high torsional stiffness and precise torque transmission capabilities.
- Gear Couplings: Gear couplings consist of toothed hubs connected by an external sleeve with gear teeth. They are well-suited for applications with high torque and moderate misalignment. Gear couplings offer good misalignment compensation and high torque capacity, making them popular in heavy-duty industrial applications.
- Beam Couplings: Beam couplings use a single piece of flexible material, often a metal beam, to connect the shafts. The material’s flexibility allows for angular and axial misalignment compensation. Beam couplings are compact, lightweight, and provide low inertia, making them suitable for applications with high-speed requirements.
- Bellows Couplings: Bellows couplings consist of a bellows-like flexible structure that connects the two hubs. They can compensate for angular, parallel, and axial misalignment. Bellows couplings are known for their high torsional stiffness and ability to maintain constant velocity transmission.
- Oldham Couplings: Oldham couplings use three discs, with the middle one having a perpendicular slot. This design allows for angular misalignment compensation while transmitting torque between the hubs. Oldham couplings are often used when electrical isolation between shafts is required.
Each flexible coupling design has its strengths and limitations, and the choice depends on factors such as the application’s torque requirements, misalignment conditions, operating environment, and speed. Proper selection of the coupling type ensures optimal performance, efficiency, and reliability in various mechanical systems and rotating machinery.
editor by CX 2024-03-14